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ZEÉV RUDNICK

Contents

1. Definition of Hecke operators 1
1.1. Overview 1
1.2. Definition of tn and T (n) = nk−1tn 2
1.3. Action on Fourier coefficients 5
1.4. Eigenforms 6
1.5. Commutativity, Hecke relations and self-adjointness 7
1.6. Multiplicity one 7

1. Definition of Hecke operators

1.1. Overview.

(1) Motivation: Ramanujan’s conjecture on multiplicativity of the
coefficients τ(n) of the modular discriminant.

(2) Lattice interpretation
(3) Effect on Fourier coefficients
(4) Selfadjointness w.r.t. the Petersson inner product
(5) Existence of basis of Sk consisting of joint eigenforms
(6) The Eisenstein series is an eigenform

We recall Ramanujan’s conjecture about the multiplicative relations
in the coefficients of the modular discriminant ∆/(2π)12 = q+

∑
n≥2 τ(n)qn:

τ(mn) = τ(m)τ(n), gcd(m,n) = 1

For instance, τ(2) = −24, τ(3) = 252, and τ(6) = −6048 = −24 · 252,
so that τ(6) = τ(2) · τ(3).

τ(p)τ(pr) = τ(pr+1) + p11τ(pr−1), p prime, r ≥ 1.

For instance τ(4) = −1472 = (−24)2 − 211 = τ(2)2 − 211.
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These were proved by Mordell (1917), and can be combined as

τ(m)τ(n) =
∑

d|gcd(m,n)

d11τ(
mn

d2
)

What we will show that for on the space of cusp forms Sk (k ≥ 12
even), there are linear operators (matrices) T (n) : Sk → Sk which

• T (n) commute with each other,
• Satisfy the relations

T (m)T (n) =
∑

d|gcd(m,n)

dk−1T (
mn

d2
)

• are self-adjoint with respect to the Petersson inner product on
Sk, hence (by linear algebra) may be simultaneously diagonal-
ized, that is there is an orthogonal basis of Sk consisting of joint
eigenforms of all T (n)
• a joint eigenform f , with T (n)f = λ(n)f , ∀n ≥ 1, has its

Fourier coefficients given by

af (n) = af (1)λf (n)

Hence if f is a joint eigenform, then necessarily af (1) = 0, otherwise
f = 0, and in that case we can normalize af (1) = 1, so that the Fourier
expansion of f has coefficients

af (n) = λf (n), af (1) = 1

and the Hecke eigenvalues λf (n) inherits the multiplicative relations of
T (n), that is

λf (mn) =
∑

d|gcd(m,n)

dk−1λf (
mn

d2
)

A special case is the modular discriminant ∆ ∈ S12: Since S12 is
one-dimensional, automatically ∆ is a joint eigenform of all the T (n),
and hence the coefficients of the normalized form satisfy the Hecke
relations, proving Ramanujan’s conjectures.

1.2. Definition of tn and T (n) = nk−1tn. We recall that a modular
form of weight k is in particular given by a function F on the space of
lattices, which is homogeneous degree −k: F (λL) = λ−kF (L), λ ∈ C∗.
The recipe was to write for τ ∈ H, the lattice with positive basis
L = 〈τ, 1〉

f(τ) = F (〈τ, 1〉)
We now define

tnF (L) =
∑
L′⊂L

[L:L′]=n

F (L′)
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as the sum over all sub-lattices of index n.
If F is homogeneous of degree −k, then so is TnF , because the sub-

lattices of index n in λL are precisely λL′, where L′ runs over all sub-
pattices of index n in L, so that

tnF (λL) :=
∑
K⊂λL

[L:K]=n

F (K) =
∑
L′⊂L

[L:L′]=n

F (λL′) =
∑
L′⊂L

[L:L′]=n

λ−kF (L′) = λ−k(tnF )(L)

Hence tn acts on the space of lattice functions of weight −k.
Next, we need to see the effect on the condition that f(τ) is holomor-

phic in H, and that f is bounded at infinity. For this, it is convenient
to first find an explicit parameterization of the sub-lattices of index n
in a given lattice. It suffices to do so for the standard lattice:

Proposition 1.1. Let L be a lattice with basis w1, w2: L = Zw1 +Zw2.
Then the sub-lattices of index n are

L′ = 〈aw1 + bw2, dw2〉, a, d ≥ 1, ad = n, 0 ≤ b < d

Proof. It suffices to show that the sub-lattices of index n in Z2 are
L′ = g · Z2,

g =

(
a b
0 d

)
∈ Mat(2,Z), ad = n, a, d ≥ 1, 0 ≤ b < d

that is
L′ = 〈(a, b), (0, d)〉

This is essentially the Hermite normal form. Think of Z2 as row
vectors, and take a basis of L′ (of row vectors)

w′1 = (α, β), w′2 = (γ, δ)

and note that (possibly after switching the two vectors)

det(w′1 | w′2) = [Z2 : L′] = n.

Now apply row operations, of adding an integer multiple of one

row to the order (so pre-multiplying by

(
1 n
0 1

)
or

(
1 0
t 1

)
), perform-

ing the Euclidean algorithm for finding the GCD of the first column
gcd(α, γ) = a = xα + yγ ≥ 1, until we end up with a new basis (it is
still a basis since each step did not change this property)

(w′′1 | w′′2) =

(
a b′

0 d

)
or

(
0 d
a b′

)
Then if necessary we switch the vectors (and change one of their signs),

which amounts to pre-multiplying the matrix of rows by

(
0 −1
1 0

)
, to
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get a basis (
a b′

0 d

)
Note that since we pre-multipled by an (integral) matrix, have not
changed the determinant, so that ad = n. If necessary, now pre-
multiply by −I to achieve a, d > 0.

Finally, subtract a multiple of the second row from the first to replace
b′ by b = b′ − nd ∈ [0, d− 1] to obtain a basis of the desired shape.

Example: We are given a basis of a sublattice of index 2 with row
matrix (

6 4
5 3

)
which has determinant −2. Then switch rows to get a matrix with
determinant +2 (

0 1
1 0

)
M =

(
5 3
6 4

)
= M1

Then continue with row operations

M1 →
(

1 0
−1 1

)
M1 =

(
5 3
1 1

)
= M2 →

(
1 −5
0 1

)
M2 =

(
0 −2
1 1

)
= M3

→
(

0 1
−1 0

)
M3 =

(
1 1
0 2

)
so that

M =

(
6 −1
5 −1

)(
1 1
0 2

)
so that L′ = 〈(1, 1), (0, 2)〉. �

Exercise 1. Let L′ = {(x, y) ∈ Z2 : x+ y = 0 mod 5} ⊂ Z2. Find the
Hermite normal form L′ = 〈(a, b), (0, d)〉 for L′

Consequently, the action of tn on f ∈ Mk which arises from the
lattice function F , is by

(tnf)(τ) =
∑
ad=n

∑
0≤b<d

d−kf(
aτ + b

d
)

Indeed,

(tnf)(τ) =
∑
ad=n

∑
0≤b<d

F
(
〈aτ + b, d〉

)
=
∑
ad=n

∑
0≤b<d

d−kF
(
〈aτ + b

d
, 1〉
)

=
∑
ad=n

∑
0≤b<d

d−kf(
aτ + b

d
)
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We introduce a different normalization of the Hecke operators

T (n) = nk−1tn

which will result in cleaner formulas. Thus for f ∈Mk,

(1) T (n)f(τ) = nk−1
∑
ad=n

∑
0≤b<d

d−kf(
aτ + b

d
)

From (1) we see that if f(τ) is analytic in τ then so is T (n)f ; and if
f is bounded at infinity then so is T (n)f in fact

T (n)f(i∞) = nk−1
∑
ad=n

∑
0≤b<d

d−kf(i∞) = nk−1
∑
d|n

d1−kf(i∞) = σk−1(n)f(i∞)

and in particular T (n) preserves the space of cusp forms: T (n) : Sk →
Sk.

We summarize all this by

Theorem 1.2. The Hecke operators act on Mk and preserve the space
of cusp forms Sk.

1.3. Action on Fourier coefficients.

Proposition 1.3. Assume f ∈ Sk has Fourier expansion

f(τ) =
∑
m≥1

A(m)qm

Then T (n)f has the expansion T (n)f =
∑

m≥1Bn(m)qm with

Bn(m) =
∑

a|gcd(m,n)

ak−1A(
mn

a2
)

Proof. Setting e(z) = e2πiz, we have

T (n)f = nk−1
∑
m≥1

A(m)
∑
ad=n

∑
0≤b<d

d−ke(m
aτ + b

d
)

= nk−1
∑
m≥1

A(m)
∑
ad=n

d−ke(
maτ

d
)
∑

0≤b<d

e(
mb

d
)

Now ∑
0≤b<d

e(
mb

d
) =

{
d, d | m
0, d - m

so that

T (n)f = nk−1
∑
m≥1

A(m)
∑
ad=n
d|m

d1−ke(m
aτ

d
)
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Writing m = dm′ this becomes

T (n)f =
∑
m′≥1

A(dm′)
∑
ad=n

(
n

d
)k−1qm

′a

Collecting together powers of q, by setting m′′ = am′ and writing
d = n/a, we obtain

T (n)f =
∑
m′′≥1

qm
′′ ∑
a|m′′,a|n

ak−1A(
m′′n

a2
)

and therefore

Bn(m) =
∑

a|gcd(m,n)

ak−1A(
mn

a2
)

�

1.4. Eigenforms. Now assume that f is a joint eigenfunction of all
the T (n)’s:

T (n)f = λ(n)f, ∀n ≥ 1

Then Bn(m) = λ(n)A(m), so that

λ(n)A(m) =
∑

a|gcd(m,n)

ak−1A(
mn

a2
)

Taking m = 1 gives

λ(n)A(1) = A(n)

In particular, for an eigenform f 6= 0 we must have Af (1) 6= 0 . Hence

we can normalize by Af (1) = 1, and then we obtain

f = q +
∑
n≥2

λf (n)qn, T (n)f = λf (n)f

Corollary 1.4. The Ramanujan tau function satisfies the Hecke rela-
tions conjectured by Ramanujan.

Proof. Since S12 = C∆ is one-dimensional, it is automatic that ∆ is a
simultaneous eigenform of all Hecke operators, and hence

τ(n) = λ∆(n)

Therefore τ(n) satisfies the relations

τ(m)τ(n) =
∑

d|gcd(m,n)

d12−1τ(
mn

d2
)

�
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1.5. Commutativity, Hecke relations and self-adjointness.

Proposition 1.5. The operators T (n) on Mk satisfy the relations

T (m)T (n) = T (mn), gcd(m,n) = 1

T (p)T (pr) = T (pr+1) + pk−1T (pr−1)

Corollary 1.6. All Hecke operators commute with each other.

Recall the Petersson inner product on Sk:

〈f, g〉 =

∫
SL(2,Z)\H

f(τ)g(τ)yk
dxdy

y2

Theorem 1.7. The operators T (n) are self-adjoint with respect to the
Petersson inner product:

〈T (n)f, g〉 = 〈f, T (n)g〉, f, g ∈ Sk
Since T (n) are a commuting family of self-adjoint operators on Sk, by

a basic fact of linear algebra they may be simultaneously diagonalized.
Hence

Corollary 1.8. There is an orthogonal basis of Sk consisting of joint
eigenforms of all T (n).

This basis is unique, as we see below.

1.6. Multiplicity one. As a corollary, we deduce a “multiplicity one”
statement:

Corollary 1.9. If two nonzero eigenforms f, g ∈ Sk have the same
Hecke eigenvalue for all n, then they must by scalar multiples of each
other: f = cg, c ∈ C∗.

Indeed, if λf (n) = λg(n) for all n ≥ 1 then we have f = af (1)
∑

n≥1 λ(n)qn,

g = ag(1)
∑

n≥1 λ(n)qn so that g = ag(1)

af (1)
f .

Exercise 2. Suppose f = A(0) +
∑

m≥1A(m)qm ∈ Mk is a non-
cuspidal modular form of weight k (so A(0) 6= 0). Show that T (n)f =∑

m≥0Bn(m)qm with

Bn(0) = A(0)σk−1(n)

and
Bn(m) =

∑
d|gcd(m,n)

dk−1A(
mn

d2
), m ≥ 1

Deduce that if such f is an eigenform of all Hecke operators T (n)f =
λf (n)f , n ≥ 1, then λf (n) = σk−1(n) and f = cEk, with c = A(1)/γk,
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Ek = 1 + γk
∑

m≥1 σk−1(m)qm being the normalized Eisenstein series.
Thus there is essentially only one non-cuspidal Hecke eigenform in Mk.

Exercise 3. If f ∈ Sk is a Hecke eigenform, with Hecke eigenvalue
T (n)f = λf (n)f , show that for prime p, and |X| < p−1,

∞∑
j=0

λf (p
j)Xj =

1

1− λf (p)X + pk−1X2

1.6.1. Maeda’s conjecture. A strong form of the Maeda’s conjecture
states that for n > 1, the characteristic polynomial of the linear map
T (n) on Sk is irreducible. This has been checked up to very large
weights.


